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1, INTRODUCTION 

This seventh quarterly report, submitted in compliance with contract 
Con- No. NASw-934, covers the period from 3 February 1966 t o  2 May 1966. 

tinued progress has been made in both the theoret ical  and experimental work. 

During the past  quarter, the major e f f o r t  has been i n  the determination 
of the refractive index f o r  a large number of points between approxirnately 
0,s and 6p. 
as the band edge i s  approached. Additional work has been done OR the inter- 

The data shows that  there is a sharp rise in ref rac t ive  index 

pretatfon of the absorption coefficient, 

As has been previously reported (5th quarterly report)  the examination 
of the structure of amorphous films has been proceeding and a preliminary 
report on the density o f  atoms in such films is reported a t  t h i s  time, 
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2. AMORPHOUS SWLICONDUCTING BORON THIN FILMS 

2.1 Index of Refraction of Amorphous Boron T h i n  Films 

The r e a l  p a r t  of t h e  index of refraction of vacuum-deposited amorphous 

Transmission curves of the boron on quartz films were 

boron films was calculated from 0.475 p t o  L.8 p. The films were deposited 
on both fused s i l i c a  and Irtran-2, an Ekstxnan Kodak product composed of 
polycrystalline Zns, 
obtained 
and the transmission curves of boron on Irtran-2 were recorded on the Beckman 
S A  spectrophotometer [figure 2) (2 u-l6 u). 
near infrared because it has a relatively f l a t  transmission out t o  13 p. 
The index uas calculated fromthe position of the interference fringes using 
the equation below. 

using the  Cary lh spectrophotometer (figure 1) (0.19 p-2.5 p) 

The Irtran-2 was used in the 

q x =  2 p t  ( 1) 

or, solving for  p, 

9 1  P = -  
2 t  

where 

p = the r e a l  part of the index of refraction 

TI = the order of  interference 

X = the posit ion of the interference maximums i n  the transmission 
curve 

t = the film thickness, 

The order of interference was estimated by assuming tha t  p, the index 
of refraction, did not change with wavelength, T h i s  approximation is  f a i r l y  
good fo r  wavelengths of two microns or higher, but becomes increasingly less 
good as the wavelength drops below two microns. 
by applying equation (1) t o  two fringes, 

The approximation is obtained 

Dividing equation (3) by equation (4) , 
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F’igure 1. Transmission of Boron Thin Films Showing 
Interference Phenomena. Boron Film on Quartz 
in the Range 0.19 IL to 2.5 y. 
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Figure 2. Transmission of Boron Thin Films Showing 
Interference Phenomena. Boron Film on Polished 
Irtran-2 in the Range 2 IL - 16 IL 
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And solving for TI, 

i si 

and thus we obtain a quick method for estimating the order of interference. 

The  thicknesses of very homogeneously deposited films were measured by 
a Zeics interference microscope, and the index of refract ion was calculated 
using equation (2) 

T A  
P = -  

2 t  

For other films, less homogeneously deposited, the thicknesses were cal- 
culated by solving equation ( 2 )  fo r  t, 

T X  t = -  
2 P  

and using a value for ~1 calculated fo r  the more homogeneous films, The 
f i lm thic?hess was calculated f o r  one wavelength and t h i s  value for thickness 
was then used in subsequent calculations for p. 
i n  figure 3. 

The r e su l t s  are plot ted 
The data  as  determined by Gebhardt' and Moritaa are  a lso given 

f o r  cOmparison, 

2.2 
t 

Absorxance of horDhous Boron T h i n  Films 

The absor&nce of vacuum-deposited amorphous boron f i l m s  w a s  obtained 
from 0.16 p t o  2.0 p.. All the films used were boron deposited on quartz 
several  hundred angstroms i n  thickness. The recording down t o  0.2 p was 
done on the Gary spectrophotometer; and the  recording down t o  0.16 p on 
the Beckman DK-2. Previously we had corrected the transmission data for 
re f lec t ion  by the use of the formula 

(1- R ) ~  e-ad 
1 - R  e 2 - 2 ~ d  T = =  

7 
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(See Sixth Quarterly Report, Sec, 2.1) which also takes multiple ref lect ions 
within the  f i l m  i n t o  account, For the ref lect ion coefficient R, we took the 
constant value of 0.29 throughout the en t i r e  range. This is  somewhat unsat- 
isfactory since one would expect R t o  change rapidly as the regions of high 
absorption are  approached. 
eliminates the re f lec t ion  correction a s  explained below. 

Presentlr, we have followed a procedure which 

The calculations were based upon equation (8) which r e l a t e s  t he  trans- 
mission, T, t o  same function of reflectance, F(r); the absorption coefficient 
a, and t h e  thickness, t. 

T a F(r) e-at 

Assuming F ( r )  a t  a given wavelength to  be the same for films of different  
thkknesses,  we Five f o r  2 films: 

- 
T1 - 

- 
T2 - 

Dividing equation (9) by equation 

and taking the  natural  logarithm 

*1 

T2 
In- 

F(r) edtl 

F(r)  eWat2 

(lo), we have 

and solving f o r  a, 

= -a (tl - t 2 )  

a =  ln[T21 
tl - t2 l T l J  

'de obtain equation (12) which allows us t o  determine the absorption coeffi- 
c ient  a t  any wavelength of a deposited material by measuring the transmission 
r a t i o  of 2 films of d i f fe ren t  and known thicknesses a t  t ha t  wavelength, 
method therefore gives us the absorption coefficient of a f i lm whose thick- 
ness i s  equal t o  the  difference i n  thicknesses of the two films, These 
calculations were done f o r  the Beckman DK-2 readings. 

The 

A s l igh t ly  d i f fe ren t  approach was used with the Cary Lk spectrophotometer 
measurements, 
I/Io or, s ta t ing  the r e su l t  i n  terms of transmission, T/Tos where T i s  the 

When recording with the l inear  slidewire, the Cary reads out 
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transmission through the sample s ide of the spectrophotometer and To is the 
transmission through t h e  reference side. 
nonlinear slidewire, the Cary reads out log, (To/T), 
log, (T2/T1) as  i n  equation (E?), fi lm No, 2 should be placed in t h e  reference 
s ide and f i l m  No. 1 in the  sample side. 
hence on scale) reading, the thickness of f i l m  No. 2 (in reference side) 
should be less than the thickness of f i l m  No, 1 (sample side) , 
has the enormons advantage of recording loge T2/T1 direct ly ,  

However, when record-hg with the 
Therefore, t o  read out 

In order t o  give a posit ive (and 

This method 

Results and Discussion 

As was s t a t ed  in the l a s t  quarterly report, we have succeeded i n  
obtaining f i l m s  of ultra-pure boron, 
by the absorption spectra in  the f a r  infrared, We have now obtained the 
absorption spectra of these pure films i n  the near u l t rav io le t ,  v i s ib le  and 
near infrared regions, by a novel method which eliminates the ref lect ion 
correction as explained i n  the  previous section. 
been obtained for very t h i n  films varying in thickness between 100 and 500 1. 
One such curve for  a 400 2 thick film is shown in figure 4 ( s t r i c t l y  speaking, 
the dlfferencein thicknesses of two films is equal t o  400 8) , 
t i on  curve differs considerably from those reported previously, The 
following features of th spectrum are worth noting, 

The purity of these films was indicated 

The absorption data  has 

The absorp- 

(a )  A broad absorption band extending over near12 2 ev with a maximum 
a t  about 1.65 ev, 
l inear;  t ha t  is, it does not f i t  d i r ec t  or indirect ,  allowed or forbidden 
t ransi t ions.  
the rise with increasing e n e r p  is  slow, 
reported single c rys t a l  data, 
cient,  a, a t  0.6 ev which is three orders of magnitude higher than that fo r  
a s ingle  crystal ,  On the other hand, from single c rys t a l  data, a increases 
by nearly two orders of magnitude as energy increases from 0.6 t o  1.6 ev, 
w h i l e ,  i n  our case, the  absorption coefficient is only three times a s  large 
a t  1.6 ev. Even though one would expect higher values of a for  amorphous 
films, due t o  lack of  long range order, our observed values seem unusually 
large , 

The rise in absorption between 0.6 and 1.6 ev appears 

The absorption coefficient i n  t h i s  region is very high, though 

we observe a value for  the absorption coeffi- 
Comparing our values with the 

(b) A mininnm i n  absorption is noticed a t  approximately 2.55 ev, 
beyond which the absorption increases again, Gaul6 e t  a 1 2  have reported 
such a minimum a t  approximately the same energy fo r  s i n g l e  c rys t a l  boron, 
though they f a i l ed  t o  observe such a dip in absorption for  a 0.8 p thick 
film. It is not known whether the i r  data is  corrected fo r  reflection. We 
did not observe the minimum f o r  data which was not corrected for  ref lect ion,  
The value of adsorption coefficient i n  this region is  comparable t o  that 
reported for a s i n g l e  crystal. 

T h e  absorption coefficient a seems t o  f i t  the expression val id  for  
d i rec t  t ransi t ions i n  the  region 2,85-3,25 ev, 
and one obtains an intercept of 2.6 ev showing existence of a d i r ec t  transi- 
t ion  a t  this energy value, 

This is  shown i n  figure 5 
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A possible quali tative explanation of the above observations is  offered 
Borland5 has shown tha t  f o r  a one-dimensional disordered l a t t i ce ,  

Although no such complete 
below, 
a l l  the eigen-states of the system are  localized, 
treatment ex is t s  for  a disordered three-dimensional l a t t i ce ,  it i s  confidently 
believed t h a t  a part of the states in such a system are  localized, 
bel ief  i s  strengthened $y the work of Banyai' f o r  amorphous germanium and 
Hartke and Regensburger fo r  amorphous selenium. 
mental r e su l t s  are  explicable i n  terms of band theory ub re  one incorporates 
the existence of traps, Le., a localized l eve l  i n  the forbidden region of 
t h e  energy band spectrum. A broad opt ica l  absorption edge is observed f o r  
amorphous selenium which has been explaimd' i~ +,em> cf twc t m s  of tram- 
i t ions ,  one involving the t ransi t ion between localized levels,  which a re  
necessarily observed a t  energies which are lower than the value of the band 
gap for  a single crystal ,  and another type of t rans i t ion  between the non- 
localized levels. 
is  obtained from t h e  t o t a l  absorption by measuring the photoconductivity of 
amorphous selenium which i s  normalized t o  unity a t  energies about an electron- 
vo l t  above t h e  value of the band gap for a single crystal ,  

Such a 

I n  both cases the experi- 

T h e  individual absorption due t o  two types of t ransi t ions 

A similar explanation is possible for  our resu l t s  but th i s  can only be 
confirmed by studying the variation in photoconductivity of amorphous Boron 
with energy, 
levels above and below the otherwise sharp band edges in a crystal ,  
the  density of s t a t e s  i n  the neighborhood of a band edge is  now modified 
with a nonvanishing value of density of s t a t e s  i n  the otherwise forbidden 
part of the energy spectrum, 
account for  the high value of absorption which is  observed a t  l o w  energy 
values. 
for  band gap of a single c rys ta l  Kill seem t o  indicate tha t  the density of 
s t a t e s  near the band edges is s t i l l  re la t ive ly  high, 

The lack of long-range order in a system w i l l  create localized 
That is, 

The t rans i t ions  between these levels  w i l l  

The maximum observed a t  1.65 ev which is close t o  the value reported 

The rise i n  absorption beyond 2.55 ev can be explained a s  due t o  a new 

The fac t  that this minimum is not affected by the amorphous nature 
t rans i t ion  ei ther  somewhere e l se  in the Bril louin zone or between deeper 
levels, 
of t he  system w i l l  seem t o  indicate tha t  disorder does not influence the 
deeper levels. 
the  neighborhood of the band edges, 

That i s  t o  say the density of s t a t e s  is mainly affected in 
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3. STRUCTURE OF AMORPHOUS THIN FILMS 

The most general technique f o r  studying the arrangement of atoms i n  
matter is the determination and interpretat ion of the scattering of radiation 
by the matter i n  question, 
is cawparable t o  the dimensions of structure t o  be detected, and regular i t ies  
of structure produce diffraction maxima and m i n i m a  in the measured var ia t ion 
of scattered in tens i ty  with angle, It is convenient t o  discuss the in tens i ty  
function 
(hasin @$;/A, where 8 - rp/2 = one-half the scattering angle, and s has the 
dimensions of reciprocal length, 
t e red  intensi ty  then depend on trigonometric functions, sin (rs) , where r 
is a distance in the structure.  

The radiat ion is chosen so tha t  i t s  wavelength 

s, in terms of a measure of the scat ter ing angle defined as 

The relatione be-kweerr s t r?x t rz re  asd scat- 

We have worked with films o f  boron, germanium, and sil icon. When only 
one type of atom i s  involved, as in these structures,  a scat ter ing function 
D( s) character is t ic  of an isolated atom can be separated. 
scattered jntensity I( s) i s  related t o  the density p(r) of atoms a t  a dis- 
tance r from the average atom by the equation 

It can be shown’that 

where po i s  the average density for  the whole structure. If we define 

then a Fourier imersion yields 

s I,(s) s i n ( r s )  ds . 
0 

For an isotropic material the s t a t i s t i c a l  information conveyed by p(r)  is 
all the  information obtainable by intensi ty  measurements. 

The in tens i ty  function & osc i l la tes  about zero u i t h  decreasing ampli- 
tude as s increases, and the integral  over s can be terminated a t  some upper 
l i m i t  so. The resolution of the structure investigation depends on the high- 
frequency components of the variation of p(r) with r, which are contributed 
by the functions s&(s) s i n ( r s )  a t  high values of s. 
is  thus o f  the order of n/s,. 

The resolution i n  r 
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Studies of solids and l iquids have generally been made with Xrags or 
neutrons i n  the wavelength range 0.7-1.6 8. 
then about 25, and the usual value i s  15 or less. 
electron diffraction i s  preferable' because the scat ter ing is  more intense 
and wavelengths of the order of 0.05 2 can be used, 
intensively developed fo r  study o f  the structure of gas molecules, Values 
of so ranging from 30 t o  60 are  considered necessary fo r  such work, 

The absolute maximum f o r  so is  
For th in  films the use of 

The technique has been 

Instruments for examination of solids by electron d i f f rac t ion  usually 
are l imited t o  lower s values because the precise measurement of closely 
spced, sharp diffractton maxima from c_ry.s+,aUhe smples is xsually most 
important, To obtain wide-angle measurements of the diffuse patterns frola 
amorphous thin films we have ins ta l led  a simple modification i n  the JFS4-a 
e lectron microscope, by which the camera length is  almost halved and so = 45 
can be attained. The patterns were recorded in a ser ies  of graded exposures 
t o  permit a l l  portions t o  f a l l  wi th in  the measurable range of photographic 
density 

The boron and germanium plates have been measured. T h i s  was done with 
a recording microdensitometer having a l inear  density scale w i t h  a range of 
0-2.0. 
cards by a commercial data-processing f i r m .  
data was done Kith an IBH 7094 computer. 

The recorder charts were t ranslated t o  d i g i t a l  records on punched 
Further processing of these 

"he curves and functions derived from them were represented by values 
a t  a set  of uniformly spaced points, 
obtained by f a r - p o i n t  interpolation from the or iginal  data. 
of the density values were calculated and plotted mechanically. 
were intercompared t o  detect disagreements, and those segments were selected 
that appeared t o  give the best  representation of the in tens i ty  curve over 
t he  fuU range of angles. 
segments match exactly. 
boron and 29.6 fo r  germanium. 

The i n i t i a l  density values were  
Logarithms 

The curves 

Additive corrections were applied t o  make adjacent 
The f i n a l  so values of the data used were 20.5 f o r  

The  in tens i ty  I( s) should approximate the atomic intensi ty  function 
D ( s )  more and more closely as s increases, the absence of high-frequency 
components in the function (p(s) - po) being implied by the f i n i t e  s i z e  of 
atoms. The D ( s )  functions were approximated by choosing 10-15 points on 
the combined intensi ty  curve t o  represent a mean of the rapid osci l la t ions 
and using four-point interpolation. 

Fourier transforms were obtained.with a computer routine specially 
coded i n  FORTRAN, The functions &(s) were found t o  give smooth transform 
curves, but the transforms o f  the functions s &(s) showed the  usual rapid 
osci l la t ions due t o  termination. This problem is  generally encountered 
because multiplication by s increases the contribution from the  high-angle 
portion of the intensity curve. 
&(s) by an a r t i f i c i a l  temperature factor  of the form exp (-Bs2) representing 
the effect  of a random osci l la t ion of a l l  atoms about the i r  mean positions. 

The e f f ec t  was mitigated by multiplying 
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The value of B uas chosen so that sp exp (-Bso2) = 1, L e , ,  the function Im 
was unchanged a t  i ts  upper termination, 
shown in figure 6 fo r  boron and germanium, 
compared w i t h  the r a d i a l  dis t r ibut ion curve obtained by Richter and Breitling 
from X-ray measurementsl0; the positions of a l l  peaks a re  in good agreement, 

The present curves require refinement by proper adjustment’l of the 

T h i s  procedure gave the curves 
The curve for germanium may be 

so-called “background” curve D(s) t o  give l i nea r i ty  in the range of r below 
the nearest-neighbor peak. 
function must equal -4nrp0. 
are available, t h i s  slope will provide a basis  of reference for  the estima- 
t i o n  of the coordination numbers by integration over the first peak, 
the en t i r e  sequence of measurement and computation procedures has been proved 
by successful application t o  the determination of the r a d i a l  dis t r ibut ion 
function fo r  boron and redetermination of t h a t  for  germanium, these tech- 
niques will be applied t o  patterns of s i l i con  already recorded and t o  other 
amorphous thin films. 

In this region p(r)  = 0, and the calculated 
When the adjusted r ad ia l  dis t r ibut ion curves 

When 
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5. SUMMARY 

Daring t h e  pas t  quarter, the opt ical  properties of amorphous boron 
th in  films have been rechecked because of the improvement i n  the character 
of the f i l m s  as  reported i n  the l a s t  quarter. 
of the films, there is  a greater surety of accuracy i n  these measurements 
and a t  this time we are reporting on the refract ive index, abso$&ce, and 
absorption coefficient. 
t h i n  film has continued and is nearing completion f o r  boron and germanium. 

With the increased pur i ty  

The characterization of s t ructure  of amorphous 

In the next quarter, it i s  expected t h a t  the opt ica l  properties of 
boron filnrs i n  the v i s ib l e  and infrared t o  16 p w i l l  be completed and t ha t  
photoconductivity measurements K i l l  be made t o  confirm the explanation of 
band s t ructure  presented in th i s  report. The work on film structure  w i l l  
be continued and a final detellnination of nearest neighbor concentrations 
may be possible. 
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